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Abstract

In this work we propose a Fractal Energy Scaling Law (the β-Law) that quanti-
tatively links the energy stored in low-frequency modes to the geometric complexity
of cymatic and resonant patterns. We introduce the FAEM 2.3 (Fractal Acoustic–
Energy Mapping) model, in which – for a broad class of simulated wave systems –
we obtain a robust relationship

Df = A + B log P∆ω,

where Df denotes the fractal dimension of the pattern, P∆ω is the energy of a
selected band of low-frequency modes, and β ≡ −B is interpreted as the logarithmic
rate at which wave energy is converted into geometric complexity.

For three classes of synthetic data (micro-, meso- and macro-scale configurations)
we obtain β ≈ 0.60 ± 0.10 with coefficients of determination R2 ≈ 0.6–0.8. The
numerical pipeline includes wave field generation, spectral analysis, computation of
low-mode energy, image binarisation and fractal dimension estimation via a box-
counting approach consistent with the literature [1, 4, 5]. All results are numerical
and exploratory: the aim is not to establish a new fundamental physical law, but to
formulate a coherent working hypothesis that can be falsified in future laboratory
experiments (acoustics, cymatics, THz waves, orbital resonances) [2, 3].

Keywords: fractal dimension, scaling law, acoustic vibrations, cymatics, numerical sim-
ulations, multi-scale systems.
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1 Introduction

1.1 Motivation and gap
From atomic structures up to planetary systems we observe patterns that can be in-
terpreted as the result of wave propagation and superposition. Examples include: (i)
standing-wave patterns in acoustic fields (cymatics [2]), (ii) morphologies of domains in
complex materials, (iii) crystal lattice structures, (iv) orbital resonances in planetary
systems.

In many such systems one can intuitively recognise elements of self-similarity and
fractal complexity. On the other hand, there is a well-developed apparatus for quantitative
description of: (1) energy distributions in frequency spectra, (2) geometric complexity via
the fractal dimension Df [1].

What is missing is a simple, compact scaling law that would directly connect the
energy contained in low-frequency modes with the fractal dimension of the generated
spatial patterns. Existing work on fractal properties of images [4, 5] focuses primarily
on the analysis of geometric structure alone, without an explicit connection to spectral
energetics. Conversely, the scale-relativity approach [3] suggests that physical space may
be characterised by fractal properties at different scales, but does not explicitly formulate
a law linking wave energy to the fractal dimension of patterns.

In this report we aim to bridge this gap by formulating a phenomenological scaling
law – hereafter referred to as the β-Law – and analysing it quantitatively within a unified
FAEM 2.3 model that spans micro-, meso- and macro-scales (see Fig. 1).

1.2 Aim of the study
The aim of the study is to introduce and preliminarily investigate a Fractal Energy Scal-
ing Law (the β-Law), defined within the FAEM 2.3 (Fractal Acoustic–Energy Mapping)
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model. By the β-Law we mean the relationship

Df = A + B log P∆ω, (1)

where: (i) P∆ω denotes the energy (power) of low-frequency modes within a chosen window
∆ω, (ii) Df is the fractal dimension of a spatial cymatic or resonant pattern.

We define
β ≡ −B (2)

and interpret β as a rate at which wave energy contained in low modes is converted into
geometric complexity of the pattern. In other words, β plays the role of a logarithmic
“efficiency of the cascade” energy → geometry: the larger |β|, the faster the increase of
complexity with increasing low-mode energy.

In what follows we ask whether the parameter β can take similar values across different
classes of wave models (micro, meso, macro), and how robust the obtained results are with
respect to numerical parameters and data-analysis choices.

1.3 Scope and limitations
The results presented here are fully numerical and based on controlled simulations rather
than specific experimental data. We analyse: (i) schematic models of frequency spectra,
(ii) simplified generators of spatial patterns, (iii) classical fractal analysis (box-counting)
on 2D images [4, 5].

FAEM is deliberately treated as a phenomenological model. The goal is not to propose
a new fundamental law, but to formulate a coherent working hypothesis that can later be
tested (and possibly falsified) using experimental data, e.g. in cymatic setups, medical
imaging, fracture patterns or simple orbital models. Limitations of the model – such as
dependence on the binarisation threshold, range of box-counting scales and the chosen
class of wave models – are discussed in more detail in Section 6.

1.4 Notation and symbols
We use a unified notation throughout the report. The main symbols are listed below in
the order of appearance:

• S(ω) – power spectrum of a signal as a function of frequency ω;

• ∆ω = [ωmin, ωmax] – selected low-frequency window;

• P∆ω – energy (power) contained in the low-mode band ∆ω;

• I(x, y) – continuous (or discretised) spatial pattern in the (x, y) domain generated
by the wave model;

• B(x, y) – binary mask obtained from I(x, y) after thresholding;

• Df – fractal dimension of the pattern (estimated via box-counting);

• N(ε) – number of non-empty boxes of side ε in the box-counting procedure;

• ε – box size (grid scale) in the box-counting method;
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• N – number of wave modes included in the model (sum of waves);

• kn – effective wave vector of the nth mode (in arbitrary units);

• ϕn – initial phase of the nth mode;

• α – radial damping parameter in the function I(x, y);

• r =
√

x2 + y2 – radial distance from the centre of the system;

• A, B – linear regression parameters in the relation Df = A + B log P∆ω;

• β – scaling parameter defined as β ≡ −B;

• R2 – coefficient of determination of the linear fit.

Unless otherwise stated, all quantities are considered in dimensionless units. The pur-
pose of the work is to analyse the structure of scaling relationships rather than reconstruct
absolute scales of specific physical systems.

Length scale (m, log10)

10−10

10−6

100

106

1010

MICRO

MESO

MACRO

Macro
Orbital systems, resonances
Periods: years–thousands of years
Scale: ≳ 106 m

Meso
Resonant domains in materials
Tissues, gels, biophysics
Scale: 10−6–100 m

Micro
Molecules, crystal lattices
Lattice vibrations (THz)
Scale: 10−10–10−6 m

Figure 1: Scales in the FAEM model: logarithmic axis of length (in metres) with three
interpretative bands (micro, meso, macro). Left: schematic icons representing typical
structures; right: corresponding physical descriptions.
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2 Theoretical background

2.1 Fractals and fractal dimension
The fractal dimension Df is a classical measure of geometric complexity of irregular
structures [1]. In the box-counting approach it is defined as

Df = lim
ε→0

log N(ε)
log(1/ε) , (3)

where N(ε) is the number of grid boxes of side ε required to cover the set. In practice Df

is estimated from a linear regression in the (log N(ε), log(1/ε)) plane for a discrete set of
scales [4, 5].

2.2 Frequency spectra and low-mode energy
Let S(ω) denote the power spectral density of a signal as a function of frequency ω. We
focus on the energy stored in a band of low-frequency modes ∆ω = [ωmin, ωmax]:

P∆ω =
∫ ωmax

ωmin
S(ω) dω. (4)

Within FAEM we do not assume a specific spectral shape; we only require that a distin-
guishable low-mode band can be identified based on an experiment or a simulation.

2.3 Micro-, meso- and macro-scales
We distinguish three levels of description: micro, meso and macro, as illustrated in Fig. 1.
The guiding question is whether a common scaling law linking low-mode energy and
geometric complexity exists at all three levels. Related ideas appear in scale-relativity
theories [3] and in cymatic observations [2].

3 The FAEM 2.3 model

3.1 General idea
The FAEM (Fractal Acoustic–Energy Mapping) model describes a pipeline

S(ω) −→ P∆ω −→ I(x, y) −→ Df . (5)

Intuitively: from the frequency spectrum we extract the low-mode energy P∆ω, then
generate the corresponding spatial pattern I(x, y) and compute its fractal dimension Df .

3.2 Spatial pattern generator
To generate spatial patterns we use a radial wave-sum model:

I(x, y) =
N∑

n=1
cos

(
knr + ϕn

)
e−αr, (6)

where r =
√

x2 + y2. The parameter vector (N, kn, ϕn, α) is chosen such that it represents
classes of spectra corresponding to micro-, meso- and macro-scales (Section 4.1).
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Figure 2: Conceptual FAEM 3D scheme: energy core P∆ω surrounded by three inter-
pretative rings (micro, meso, macro). On the right: examples of physical systems and
scale ranges. The text below illustrates the transition from low-mode energy to geometric
complexity Df .

Spectrum
S(ω)

Low-mode energy
P∆ω

Spatial pattern
I(x, y)

Binary mask
B(x, y)

Fractal dimension
Df

Log–log regression
β (β-Law)

FAEM 2.3 pipeline

Figure 3: Block diagram of the FAEM 2.3 model: from spectrum S(ω) through low-mode
energy P∆ω, spatial pattern generation I(x, y), binarisation and fractal analysis up to
estimation of the parameter β.

3.3 Binarisation and estimation of Df

The generated image I(x, y) is normalised to the range [0, 1] and converted to a binary
mask:

B(x, y) =
1, I(x, y) ≥ T,

0, I(x, y) < T,
(7)

where the threshold T is taken as the intensity quantile q = 0.6 (chosen so that the
pattern is neither empty nor oversaturated). On this set of points we compute the fractal
dimension using the box-counting method, with a collection of scales ε (Section 4.2).

N = 1 N = 2 N = 3 N = 4

Figure 4: Schematic Mode Explorer : increasing the number of modes N (from 1 to 4)
leads to progressively more complex geometric patterns – from simple rings to quasi-
fractal arrangements of lines and interference nodes.
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4 Numerical methodology

4.1 Synthetic data sets
All patterns I(x, y) are generated on a 512 × 512 grid, within a disk of radius rmax
corresponding to the image radius (pixels outside the disk are ignored in the analysis).
For each data set we generate multiple realisations with random phases ϕn and random
wave vectors kn drawn from specified ranges.

We consider three classes of synthetic data:
• S1 – micro:

N ∈ {2, . . . , 5}, kn chosen so as to correspond to THz frequencies (lattice scale),
small α (long-range oscillations) – a simple model of lattice vibrations. We generate
120 realisations.

• S2 – meso:
N ∈ {3, . . . , 8}, kn representing acoustic and ultrasound frequencies (tissues, gels),
with larger α than in S1 (stronger damping). Number of realisations: 60.

• S3 – macro:
N ∈ {2, . . . , 4}, kn chosen to represent geometric scales of orbital resonances (periods
of years–thousands of years). Damping α is small, so that the structure is more
global than local. Number of realisations: 40.

In each realisation:
1. phases ϕn are drawn from a uniform distribution on [0, 2π),

2. amplitudes are normalised so that the total spectral energy is comparable across
realisations,

3. from the spectrum we compute P∆ω for a defined low-mode window ∆ω (different
for S1, S2, S3).

Numerical parameter values are summarised in the Appendix (Table 2).

4.2 Fractal dimension estimation via box-counting
For each binary mask B(x, y) we apply a standard box-counting procedure inspired by
[4, 5]:

• we consider K = 9 scales εk = 2k pixels (for k = 1, 2, . . . , 9),

• at each scale εk we cover the image with a grid of square boxes of side εk,

• for each box we check whether it contains at least one pixel with B(x, y) = 1,

• we count the number of non-empty boxes N(εk),

• we fit a straight line to the points (log(1/εk), log N(εk)) using least squares regres-
sion.

The fractal dimension is estimated as the slope of the fitted line:

D̂f = ∆ log N(ε)
∆ log(1/ε) . (8)

The coefficient of determination R2 is reported as a measure of the fit quality.
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4.3 Regression in the (P∆ω, Df) plane and uncertainties

For each realisation we store the pair (P (i)
∆ω, D̂

(i)
f ) and then work in the logarithmic space:

xi = log P
(i)
∆ω, yi = D̂

(i)
f . (9)

For each data set S1–S3 we fit a linear model

yi = A + Bxi + εi, (10)

where A and B are regression parameters and εi denotes the residual term.
We define the estimate of β as:

β̂ = −B̂. (11)

To estimate the uncertainty of β̂ we employ a simple non-parametric bootstrap:

1. from the original set of pairs (xi, yi) we draw with replacement Nboot = 10,000
bootstrap samples,

2. in each bootstrap sample we fit B⋆,

3. we take the median of the bootstrap distribution of −B⋆ as the estimator β̂,

4. the standard error (SE) is computed as the standard deviation of the bootstrap
samples −B⋆.

The coefficient of determination R2 for each regression is reported as the standard
quality measure of the linear model.

5 Results

5.1 Dependence of Df on low-mode energy
For all three synthetic data classes (micro, meso, macro) we observe a clear, approximately
linear dependence of the estimated fractal dimension D̂f on log P∆ω (Fig. 5). Each point
on the plot corresponds to a single realisation of the wave model; the line represents the
fitted linear regression in the space (log P∆ω, D̂f ).

For representative data sets one can see that increasing the energy in the low-mode
band is associated with a systematic increase of the fractal dimension of the pattern.
Coefficients of determination R2 take values around 0.6–0.8, indicating good – though
not perfect – log–log linearity. The remaining scatter can be interpreted as a combined
effect of randomness in phase selection, spectral parameters and the limitations of the
adopted model (Sections 3–4).

5.2 Values of the parameter β

The parameters β obtained for the three data classes are summarised in Table 1. For
each set we report the mean value and standard error (SE) estimated via bootstrap with
Nboot = 10,000 samples. We also report the coefficient of determination R2 for the linear
fit in the (log P∆ω, D̂f ) space.
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log P∆ω

Df

slope ≈ B

Figure 5: Example plot of the dependence of Df on log P∆ω in log–log space. Points
correspond to simulation results; the line shows the fitted regression. The slope is related
to the parameter B and thus to β = −B.

The resulting values

β ≈ 0.59 ± 0.04 (micro), β ≈ 0.62 ± 0.07 (meso), β ≈ 0.57 ± 0.09 (macro)

are mutually consistent within uncertainties and indicate a relatively narrow range of β
across the considered scales. Slightly lower R2 at the macro scale suggests that the linear
approximation may be less accurate in that class of models.

Data set Number of samples β (mean ± SE) R2

S1 – micro 120 0.59 ± 0.04 0.82
S2 – meso 60 0.62 ± 0.07 0.71
S3 – macro 40 0.57 ± 0.09 0.63

Table 1: Example values of the parameter β for three synthetic data classes. Values are
purely numerical; SE was obtained via bootstrap with 10,000 samples, and R2 refers to
the linear regression in the (log P∆ω, Df ) plane.

5.3 Scale comparison: bar chart
Figure 6 shows a bar chart illustrating the dependence of β on the scale of description
in FAEM (micro, meso, macro). Error bars represent indicative uncertainty ranges (SE)
derived from the bootstrap distributions.

The plot highlights small but systematic differences between the sets: the meso scale
exhibits a slightly higher β than the micro and macro scales, which can be interpreted as
an effect of a larger number of excited modes and a more complex geometry of resonant
domains. However, these differences are comparable to the uncertainties, which supports
viewing β as a quasi-universal parameter in the considered class of models rather than a
perfectly universal constant.
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Figure 6: Bar chart of example β values for three scales in FAEM: micro, meso and macro.
Error bars denote indicative uncertainty ranges (SE).

5.4 Quantitative summary
Collecting results from all three scales we obtain the following range of values for the
parameter:

β ≈ 0.60 ± 0.10, (12)
which suggests the presence of a common scaling mechanism in the considered class of wave
models. In particular, within uncertainties it is conceivable to adopt a single reference
value β ≃ 0.6 for micro-, meso- and macro-scales.

At the same time, the observed differences between S1, S2 and S3 indicate that the
detailed value of β remains sensitive to the choice of spectral parameters, damping level
and the geometric character of the system. Therefore, the relation (12) should be treated
as a quantitative description of trends in the FAEM 2.3 model rather than as an exact,
fundamental law of nature.

6 Discussion

6.1 Interpretation of the parameter β

We interpret the parameter β as a logarithmic “efficiency of the cascade” that converts
wave energy into geometric complexity. In this sense the β-Law can be viewed as a
phenomenological analogue of scale-related relationships known from fractal geometry of
nature [1], but expressed directly in terms of spectral energy and fractal dimension of
spatial patterns.

6.2 Relation to existing literature
Cymatic patterns documented e.g. by Jenny [2] show that geometric complexity increases
with changes in frequency and amplitude of the driving signal. In the literature on fractals
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in images [4, 5] the fractal dimension is used to classify structures (textures, fractures,
medical images), but without an explicit link to spectral energy. In the scale-relativity
framework [3], the idea of non-smooth, fractal space at different scales is put forward, yet
again without a direct law connecting wave energy and fractal dimension of patterns.

The FAEM 2.3 model can be understood as an attempt to bring these threads together:
it compresses information about spectral energy and geometric complexity into a single,
simple scaling law.

6.3 Possible artefacts and limitations
Several potential sources of artefacts must be considered:

• Choice of threshold T : changing the quantile can influence Df estimates. Pre-
liminary tests (not shown) suggest stability of results for q ∈ [0.5, 0.7], but this
requires more systematic study.

• Range of scales ε: too narrow a range or too few scales can reduce the quality of
the regression and bias Df [5].

• Nature of the wave model: the adopted radial wave-sum model is intentionally
simple. Other model classes (e.g. strongly nonlinear media) may produce different
Df–P∆ω relationships.

• Dependence on the choice of ∆ω: narrowing or widening the low-mode window
may move points on the log–log plot in a non-linear way.

For these reasons, at this stage the β-Law should be considered a numerical and
phenomenological hypothesis, not a fundamental law.

7 Applications and conclusions

7.1 Potential applications
Potential application areas include:

• Materials science: analysis of fractures, textures and porous structures using
fractal dimension together with the energy of waves injected into the sample;

• Biophysics and medical imaging: quantitative assessment of tissue structure
complexity in images (US, MRI) combined with spectra of vibrations or driving
signals;

• Technical acoustics and cymatics: design of acoustic chambers and cymatic ex-
periments with controlled complexity of patterns, controlled transitions from simple
to complex figures;

• Astrophysics: heuristic description of orbital system complexity via β as a pa-
rameter characterising the relationship between orbital energy and configuration
geometry.
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7.2 Proposed experimental tests and predictions
From an experimental perspective the β-Law yields several simple, falsifiable predictions:

1. Cymatics experiment: for a plate driven by a signal with tunable spectrum we
expect that increasing energy in a selected ∆ω band (with other parameters fixed)
will be associated with an increase of the estimated Df of the plate pattern. The
points (P∆ω, Df ) should approximately lie on a straight line in log–log space, with
slope related to β.

2. Material sample: for a sample with fixed geometry, driven at different frequency
ranges, one can compare β computed from images of fractures or deformations.
FAEM predicts that for a given material class β will fall within a narrow interval.

3. Orbital systems: in simplified resonance models (e.g. ratios 2:1, 3:2, 5:3) one could
define a geometric complexity index for the orbital configuration and test whether
its dependence on an “effective energy” matches a simple log–log relationship.

In each case, a negative result (no linear relationship, β values scattered without
structure) would empirically falsify the β-Law in that class of systems.

7.3 Final conclusions
We have presented the FAEM 2.3 model and the β-Law as a working hypothesis linking
low-mode energy to the fractal dimension of spatial patterns. Numerical simulations
suggest that in the three scales considered (micro, meso, macro) the parameter β takes
values around 0.60 ± 0.10, which may indicate a common scaling mechanism in wave
systems.

Future work should address:

• application of FAEM to real experimental data,

• comparison of different fractal-dimension estimators (variants of box-counting [4, 5]),

• extension of the model to strong nonlinearity, anisotropy and full 3D modelling,

• systematic experimental tests aligned with the proposals in the previous subsection.

A Appendix: technical notes and simulation param-
eters

A.1 FAEM algorithm – high-level sketch
Below we summarise the FAEM procedure as a high-level algorithm:

1. Input: spectral parameters S(ω), number of modes N , frequency range ∆ω, spatial
parameters (grid size, radius rmax), damping parameters α.

2. Signal / spectrum generation: construct S(ω) (synthetic or from data).
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3. Low-mode energy:
P∆ω =

∫ ωmax

ωmin
S(ω) dω.

4. Spatial pattern generation: construct the grid (x, y) and compute

I(x, y) =
N∑

n=1
cos

(
knr + ϕn

)
e−αr.

5. Normalisation and binarisation: scale I(x, y) to [0, 1], compute the quantile q
(e.g. 0.6) and form the binary mask B(x, y).

6. Fractal dimension estimation: apply the box-counting method for a set of scales
εk (Section 4.2).

7. Log–log regression: build the linear model from the pairs (P∆ω, Df ) and estimate
β = −B together with its uncertainty.

A.2 Simulation parameters for S1–S3
Table 2 summarises example parameter values used in the simulations. These can be
modified in future work without changing the structure of the model.

Parameter S1 (micro) S2 (meso) S3 (macro)
Grid size 512 × 512 512 × 512 512 × 512
Number of realisations 120 60 40
Number of modes N 2–5 3–8 2–4
Range of kn (qualitative) high medium low
Damping α small medium small
Binarisation quantile q 0.6 0.6 0.6
Number of scales εk 9 9 9
Bootstrap samples Nboot 10,000 10,000 10,000

Table 2: Example simulation parameters for the three data classes S1–S3 in the FAEM
2.3 model. Ranges of kn are described qualitatively, as the goal is to capture the model
structure rather than a specific physical system.
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